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We obtain general predictions for the distribution of wave function intensities in position space on the
periodic orbits of chaotic ballistic systems. The expressions depend on effective system size N, instability
exponent � of the periodic orbit, and proximity to a focal point of the orbit. Limiting expressions are obtained
that include the asymptotic probability distribution of rare high-intensity events and a perturbative formula
valid in the limit of weak scarring. For finite system sizes, a single scaling variable �N describes deviations
from the semiclassical N→� limit.
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I. INTRODUCTION

Improving our understanding of wave function structure
and transport in quantum systems with a nonintegrable
classical limit, and of their relationship with the dynamics of
the corresponding classical system, has been a major focus of
quantum chaos research. An early and visually dramatic find-
ing along these lines was the presence of anomalously large
fluctuations in wave function intensity near the short un-
stable periodic orbits of the corresponding classical dynam-
ics. In 1983, McDonald �1� observed individual wave
functions �later called “scarred states”� with a large excess of
intensity near a particular periodic orbit, as compared with
the background Gaussian random fluctuations; the complete-
ness condition then requires other wave functions �the
“antiscarred states”� to have deficient intensity near the same
orbit. Since that time, scars have been recognized as the one
of the few visually distinctive nonrandom features of quan-
tum chaotic wave functions, as well as possibly the leading
correction to the random wave conjecture made earlier by
Berry and Voros �2�, which states that quantum wave func-
tion statistics should converge to the behavior of random
superpositions of plane waves in the semiclassical limit of
short wavelength.

The original theory of scarring was developed by Heller
�3�, who placed a lower bound on scar fluctuations, as mea-
sured by overlaps of wave functions with Gaussian wave
packets centered on the periodic orbits. Subsequent theoret-
ical successes included work by Bogomolny �4�, who first
computed an expression for scar intensity in the position
representation �where scars were originally observed�, and
by Berry �5�, who developed a parallel analysis for the
Wigner functions in phase space and predicted the structure
of fringe patterns decorating each orbit. In these pioneering
investigations, the focus was mostly on average intensities
for an energy window of nearby eigenstates, rather than on
properties of individual wave functions. Later, Agam and
Fishman �6� developed a semiclassical criterion for predict-
ing scarring or antiscarring in individual wave functions. In
the semiclassical limit, the phase-space region affected by
the scar of any given periodic orbit tends to zero while the
intensity enhancement in that region for a typical wave func-
tion remains finite; the scar effect is therefore fully consistent
with the quantum ergodicity theorems of Shnirelman,
Zelditch, and Colin de Verdiere �7�.

Scars have been predicted and observed both experimen-
tally and numerically in a wide variety of quantum systems
with a chaotic classical limit �as well as in classical wave
systems with a chaotic ray limit�. Examples include applica-
tions as diverse as microwave cavities �8�, hydrogen atoms
in a magnetic field �9�, electrons in a resonant tunneling di-
ode with magnetic field �10�, Faraday surface waves �11�,
vibrating soap films �12�, molecular vibrations �13�, and
acoustic radiation �14�.

In quantum or classical wave applications where dissipa-
tion effects are small enough for individual eigenstates to be
resolved, it is of primary interest to study the scar effect for
individual wave functions, rather than for averages over an
energy or frequency window. In fact, the early empirical evi-
dence for scarring as well as much of the empirical evidence
since has been provided in the form of images of individual
eigenstates. Such evidence, however, needs to be interpreted
with care in light of the fact that random waves also exhibit
regions of high intensity that to the eye look like scars but
are in reality perfectly consistent with Gaussian random am-
plitude fluctuations �15�. To understand the effect of scarring
on physical processes in specific systems, and even to verify
the presence of this phenomenon in the first place, it is nec-
essary to have robust quantitative predictions concerning the
statistical properties of individual wave functions, which can
be compared with data as well as with the Gaussian random
model.

Antonsen et al. �16� noted that scar statistics of individual
wave functions could be understood by combining known
short-time dynamics associated with a given periodic orbit
and random long-time recurrences whose statistical proper-
ties mirror those of random matrix theory �RMT�. Similar
ideas were used by Kaplan and Heller to obtain predictions
for mean squared intensity on an orbit �17�, and also for the
full distribution of wave function intensities on or away from
the orbit �18�. These predictions were obtained in a Gaussian
�Husimi� phase space basis, where classical-quantum corre-
spondence is most clearly manifest. On the other hand, wave
function structure in position space is often of greater physi-
cal interest. Indeed, the original empirical evidence for scar-
ring �1� and much subsequent numerical and experimental
investigation of scarring has focused on position-space prop-
erties, in contrast with the above-mentioned theoretical work.
Wave function intensities in position space are directly ac-
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cessible, for example, in microwave cavity experiments, and
in the case of a diffusive billiard, comparisons have been
made with predictions based on nonlinear sigma models
�19�. Such explicit comparisons between observed deviations
from RMT and theoretical predictions are lacking in the bal-
listic case. Furthermore, a quantitative understanding of
position-space wave function statistics is essential for ana-
lyzing experiments on nanostructures such as quantum dots.
For example, these statistics determine the effects of
electron-electron interactions on conductance peak spacings
in the Coulomb blockade regime �20�.

This paper is organized as follows. The inverse participa-
tion ratio, or mean squared wave function intensity, on a
periodic orbit is first obtained in Sec. II, followed by an
analysis of the full wave function intensity distribution in
Sec. III. In both cases, accurate and robust expressions for
these statistical properties are obtained that depend only on
the system size, instability exponent of the periodic orbit,
and proximity to a focal point. Several limiting expressions
are obtained, including a result for the probability of rare
high-intensity events, and a perturbative formula valid for
moderate intensities when deviations from RMT are small.
Finally, in Sec. IV, we compare these results with data ob-
tained in numerical simulations, and briefly investigate the
behavior of wave function statistics beyond the semiclassical
regime.

II. INVERSE PARTICIPATION RATIO

We begin by considering an unstable periodic orbit of
period T in d dimensions, passing through periodic point
�q0 , p0�. The Van-Vleck-Gutzwiller semiclassical propagator
�21� includes a contribution from this periodic orbit to the
return amplitude at time t=nT for position state q0:

GSC�q0,q0,t� =
1

�2�i��d/2�det
�p�q0,qt�

�qt
�

qt=q0

1/2

ein�S/�−��/2�

+ ¯ . �1�

Here S is the classical action associated with one traversal of
the periodic orbit, and � is the Maslov index, absorbing
changes in the sign of the amplitude. The amplitude
�det�p�q0 ,qt� /�qt�qt=q0

1/2 , where p is the initial momentum
needed to travel from fixed q0 to qt in time t, is evaluated for
the return trajectory qt=q0, and is the square root of the
corresponding classical focusing factor. Of course, q0 , p,
and qt are all d-component vectors in the general case. Omit-
ted terms in Eq. �1� are associated with other classical paths
of length t beginning and ending at the same point q0; as we
will see below the periodic path dominates the statistics of
individual wave functions when the instability exponent of
this periodic path is small. For sufficiently short times t or
sufficiently small � , GSC�q0 ,q0 , t� is a good approximation
to the true quantum return amplitude G�q0 ,q0 , t�.

For simplicity of presentation, and for easy comparison
with numerical results in Sec. IV, we now restrict ourselves
to the case of discrete-time maps, which are commonly used
as models for more general chaotic dynamical systems �22�.
One-dimensional maps may be obtained by stroboscopically

viewing a one-dimensional system with time-dependent
Hamiltonian �such as the kicked rotator or standard map
�23��, or alternatively by taking a Poincaré surface of section
for a two-dimensional time-independent Hamiltonian �such
as a hard-wall billiard or smooth two-dimensional potential�.
For a one-dimensional map on a compact phase space of area
1, the quantum vector space is spanned by a finite basis of
N=1/2�� independent position states �qi�. Conventionally,
we adopt a wave function normalization where the average
of the discrete wave function intensities is set to unity:
�i=0

N−1���qi��2=N, and the propagator G�qt ,q , t� becomes a
unitary N by N matrix. With this normalization,

Gmap
SC �q0,q0,t�

= 	 1

�iN�1/2� �p�q0,qt�
�qt

�
qt=q0

1/2

ein�S/�−��/2� + ¯ n � 0

1 n = 0

 ,

�2�

where n= t /T is an integer. Furthermore, for a d=1 map, or
equivalently for a d=2 continuous-time dynamics, the mono-
dromy matrix of the unstable periodic orbit is simply a 2 by
2 matrix, and may be written as

��qt�q,p�/�q �qt�q,p�/�p

�pt�q,p�/�q �pt�q,p�/�p
� = �a b

c d
��en� 0

0 e−n� �
�� d − b

− c a
� , �3�

where all partial derivatives are evaluated at the periodic
point �q , p�= �q0 , p0�, area preservation implies ad−bc=1,
and ��0 is the dimensionless positive instability exponent
for one iteration of the periodic orbit. Then the inverse of the
focusing factor in Eq. �2� becomes

���p�q0,qt�/�qt�qt=q0
�−1 = ��qt�q0,p�/�p�qt=q0

= 2�ab sinh��t/T�� . �4�

We are interested in the effect of the unstable periodic
orbit on individual wave function behavior at or near q0, and
specifically on the wave function intensities ���q0��2. A
general discussion of the intensity distribution P����q0��2�
is deferred until Sec. III; here we focus first on the
mean squared intensity, also known as the inverse participa-
tion ratio �IPR�,

I�q0� = ���q0��4, �5�

where the average ¯̄ is performed over eigenstates of the
system, and the mean intensity ���q0��2 is normalized to
unity as above. For a general Hamiltonian system, the aver-
age must be restricted to a classically narrow energy win-
dow; in the case of a discrete-time map, however, we are free
to average over all values of the �periodic� quasienergy.
I�q0� is the inverse fraction of wave functions in the energy
window that have significant intensity at q0; its possible val-
ues range from 1 in the case of complete ergodicity �where
every wave function has equal intensity at q0� to N in the
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case of complete localization �where the wave functions are
delta functions in position space�.

As has previously been discussed �24�, for a nondegener-
ate system the IPR is proportional to the long-time return
probability for initial state �q0�, which for the chaotic case is
in turn proportional to a sum of return probabilities due to
the periodic orbit,

I�q0� = N
−�

�

dt�Gmap�q0,q0,t��2 � F

�
n=−�

�

�Gmap
p.o. �q0,q0,nT��2

�Gmap
p.o. �q0,q0,0��2

.

�6�

Here Gmap
p.o. is the contribution to the propagator from a single

dominant periodic orbit, as given in Eq. �1�, and N is a
normalization constant. The multiplicative factor F encodes
information about all recurrences not included in Gmap

p.o. ; semi-
classically these recurrences are associated with closed clas-
sical trajectories other than the original periodic orbit. Treat-
ing these other contributions as random and uncorrelated,
which is physically justifiable for chaotic dynamics at
long times, leads to the random wave result F=3 �for real
wave functions, in the presence of time reversal symmetry�
or F=2 �for complex wave functions, in the absence of time
reversal symmetry�.

Combining the results of Eqs. �2�, �4�, and �6�, we obtain
the prediction

Ipred�q0� = F�1 + �
n�0

1

2N�ab sinh��n���
= F�1 +

1

N�ab��n=1

�
1

sinh��n�� . �7�

For instability exponent �	1, only one iteration of the orbit
contributes, and we obtain Ipred�q0�=F�1+ �2/N�ab��e−��,
converging eventually to the random wave result
IRMT�q0�=F. In the more interesting limit �
1, we obtain

�
n=1

�
1

sinh��n�
� �

n=1

M
1

�n
+ 

M

� dn

sinh��n�
�

1

�
�ln

1

�
+ � + ln 2� ,

�8�

where 1
M 
�−1 and ��0.577 is Euler’s constant. Then
we find

Ipred�q0� = F�1 +
1

��ab�N
�ln

2

�
+ ��� �9�

in the weakly unstable regime �
1.
From Eq. �7� or Eq. �9�, we see that scar strength, as

measured by the inverse participation ratio, depends on three
parameters only: the semiclassical parameter N �or ratio of
system size to wavelength�, the instability exponent � of the
periodic orbit, and the phase space orientation parameter
�ab�, which is directly related to the angle between the p axis
and the unstable manifold of the orbit at the point �q0 , p0�. In
a two-dimensional Hamiltonian system, such as a billiard or
smooth potential, the stable manifold rotates and the �ab�

parameter changes as one moves along the orbit, approach-
ing zero at the focal points. Thus all possible values of �ab�
are relevant for describing the wave function behavior near a
generic orbit, while � is a constant parameter for a fixed
orbit. For small values of �ab�, which correspond to the stron-
gest scarring, �ab� is directly proportional to the distance
from the nearest focal point on the orbit. In a specific
discrete-time map, �ab� has a single value for each orbit of
period 1, since each such orbit has only one periodic point.
However, the same correspondence between the �ab� param-
eter and distance to a focal point applies also in the case of
maps, if we consider a family of maps arising from Poincaré
sections intersecting a given orbit at various distances from a
focal point.

We need to understand the range of validity for Eq. �7� or
Eq. �9�. Classical-quantum correspondence G�q0 ,q0 , t�
�GSC�q0 ,q0 , t� fails when q0 is within a wavelength of a
focal point, as the classically singular probability density is
smoothed out by the uncertainty principle. Thus our semi-
classical derivation fails for �ab��N−1, and the correct scal-
ing behavior for this regime must be obtained by replacing
�ab�N with a number of order unity. Thus the inverse partici-
pation ratio I�q0� remains finite at O��−1� for �
1 as
�ab�N→0. We note that the IPR scales as �−1 in the basis of
phase-space Gaussians optimally oriented with respect to the
stable and unstable manifolds of the periodic orbit �17�; it is
not surprising to obtain the same scaling behavior in position
space near the focal points of the orbit, since a position state
in this case may be thought of simply as a limiting case of a
family of optimal Gaussians.

A second limitation on the validity of Eq. �7� or Eq. �9� is
that the Lyapunov time T /� needed to escape from the vi-
cinity of the orbit must be much shorter than the Heisenberg
time N, at which quantum mechanical exploration ceases and
the quantum dynamics becomes quasiperiodic. For �N�T,
the infinite sum in Eq. �7� must be cut off at n�N /T to avoid
counting classical recurrences that occur after the Heisenberg
time and have no quantum analog. This has the effect of
replacing �N in Eq. �9� with a constant of order T when
�N�T, so that the inverse participation ratio again remains
finite: I�q0���ab�−1T−1 as �→0. The behavior of the IPR for
�N�T will be discussed further in Sec. IV. For �→0 and
�ab�→0 simultaneously, the IPR must obey an upper bound
I�q0�N, which is saturated only if the position state �q0� is
itself an eigenstate of the dynamics.

In conclusion, for a given semiclassical parameter N, we
require �ab��N−1 and ��TN−1 for our semiclassical expres-
sions to be valid; smaller values of � or �ab� do not lead to
parametrically stronger scarring. At the same time, as seen
from Eq. �9�, we need simultaneously �
1 and �ab�
1 to
obtain a large enhancement of the IPR above the RMT pre-
diction. We also note that in any specific dynamical system,
multiple trajectories �periodic or closed� contribute to I�q0�
at order N−1, and a single orbit can only be expected to
dominate the wave function statistics at q0 when �ab�
1 and
�
1, i.e., when q0 is close to a focal point of a weakly
unstable periodic orbit.

III. SCAR INTENSITY DISTRIBUTION

Although the IPR provides a useful one-number measure
of the degree of wave function localization at q0, it is only
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the lowest nontrivial moment of the intensity distribution,
and as such provides limited information about the full dis-
tribution. In particular, I�q0��IRMT=F implies an increased
intensity variance and clearly suggests longer tails of the
intensity distribution, i.e., an enhanced probability of finding
wave functions with intensity I= ���q0��2 much larger or
much smaller than the average intensity. However, to obtain
quantitative predictions about the probability of such rare
events, we must go beyond the IPR to examine the full in-
tensity distribution P�I�.

As in Sec. II, we assume a clear separation of scales exists
between known short-time recurrences associated with a par-
ticular short periodic orbit and new long-time nonlinear re-
currences which semiclassically may be associated with an
exponentially large number of homoclinic paths starting and
ending near q0. The statistical properties of these new recur-
rences at long times may be assumed to be consistent with
RMT, i.e., independent of the fact that q0 happens to lie on a
short periodic orbit �17�. The full return amplitude at long
times then becomes a convolution of the known short-time
dynamics and the RMT-like random long-time recurrences
�17�:

Gmap�q0,q0,t� � �
�

Gmap
p.o. �q0,q0,��Grnd�q0,q0,t − �� .

�10�

Fourier transforming, we find that the local density of states
at q0 is given by the product of a smooth envelope associated
with the periodic orbit and a random fluctuating part:

�
�

����q��2��E − E�� = G̃map�q0,q0,E�

= G̃map
p.o. �q0,q0,E��

�

�r��2��E − E�� ,

�11�

where the r� are distributed as �real or complex� independent
Gaussian random variables with mean 0 and variance 1, and
Gmap

p.o. �q0 ,q0 ,E� is the Fourier transform of Eq. �2�. The indi-
vidual wave function intensities are given by

I� = ����q0��2 = G̃map
p.o. �q0,q0,E���r��2 = S�E���r��2, �12�

where we have given the name S�E� to the smooth part of the
local density of states at q0. Explicitly, this smooth envelope
coming from the short periodic orbit takes the form

S�E� = 1 + 2
1

�2N�ab�
�
n=1

�
1

�sinh��n�

�cos�n�ET + S�
�

−
n��

2
−

�

4
� . �13�

The full intensity distribution at q0 is given by an energy
average. Since the level density is constant for a map �and
constant within the energy window of interest for a
continuous-time Hamiltonian system�, and the random
factors �r��2 are uncorrelated with the smooth envelope
S�E�, each moment of the intensity distribution may be ob-

tained as a product of a factor depending on properties of the
orbit and a universal factor associated with Gaussian random
fluctuations:

Is = � 1

2��/T


E1

E1+2��/T

dE„S�E�…s� · ��r��2s� . �14�

Note that the smooth envelope is periodic in T, so we need
only to average over the energy interval E1EE1
+2�� /T. In particular, using I2=I�q0�, �r��4=F, and Eq.
�13�, we recover the result of Eq. �7� for the inverse partici-
pation ratio.

In the absence of time-reversal symmetry, r� is a complex
Gaussian and the random factor in Eq. �12� is exponentially
distributed,

P��r��2� = e−�r��2, �15�

while in the presence of time-reversal symmetry r� is real
and its square follows a Porter-Thomas distribution,

PTRS��r��2� =
1

�2��r��2
e−�r��2/2. �16�

For definiteness, we focus on the generic situation of no
time-reversal symmetry. At a fixed energy E, the distribution
of I=S�E��r��2 is P�I�= �1/S�E��e−I/S�E�, and the combined
intensity distribution over all energies is

P�I� =
1

2��/T


E1

E1+2��/T dE

S�E�
e−I/S�E�. �17�

Several limits are of particular interest. If the scarring is
relatively weak, i.e., S�E�−1
1 in Eq. �13�, we may expand
Eq. �17� to second order in S�E�−1 to obtain

P�I� = �1 + � − 2�I +
�

2
I2 + O��2��e−I, �18�

in complete analogy with perturbative results for disordered
systems, in the limit of weak disorder �25�. Here

� =
1

2��/T


E1

E1+2��/T

dE„S�E�…2 =
I�q0�

F
− 1 =

I�q0� − 2

2
,

�19�

and for �→0 we recover the Porter-Thomas distribution pre-
dicted by random matrix theory: PRMT�I�=e−I. In the pertur-
bative regime, deviations of the intensity distribution from
the RMT prediction are proportional to the deviation of the
IPR from its RMT value of 2. We note that the validity of Eq.
�18� requires I
1 in addition to I�
1, so perturbation
theory does not apply in the tail of the intensity distribution.

To obtain a simple expression for the probability of rare
events, i.e., intensities much higher than the average inten-

sity Ī=1, we need to follow a different approach. For large I,
the integral in Eq. �17� may be evaluated using the saddle
point �stationary phase� method, with the dominant contribu-
tion coming from the energy at which the smooth envelope
S�E� is peaked. Physically, this means that very large wave
function intensities will almost always be at the “scar ener-
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gies” E0 where interference from successive iterations of the
orbit add fully constructively, and never at the “antiscar en-
ergies” where this interference is destructive. We then obtain

P�I� =
1

2��/T
� 2�

�S��E0��I
e−I/S�E0�, �20�

where E0 is the energy at which the smooth envelope S�E� of
Eq. �13� is peaked, and S�E0� and S��E0� are the value and
the second derivative of S�E� at the peak.

For small �, we may rewrite the sum in Eq. �13� as an
integral, which may be evaluated in terms of hypergeometric
functions. We then find that the smooth local density of states
is peaked at

E0 �
− S + ���/2 + ���

T
, �21�

where the dimensionless constant ��0.2133 is the solution
of �0

�dxx sin��x−� /4� /�sinh x=0. The height of the peak is
given in this limit by

S�E0� �� 2

N�ab�
�

�
, �22�

while the second derivative is

S��E0� � −� 2

N�ab�
T2

�2

�

�3 , �23�

where �=�0
�dx cos��x−� /4� /�sinh x�3.059 and

�=�0
�dxx2 cos��x−� /4� /�sinh x�16.14 are dimensionless

constants. Combining these results, the tail of the intensity
distribution for small � finally takes the form

P�I� �� �3

2��AI
e−�I/�A, �24�

where A=�2/N�ab� is a geometrical factor that becomes
O�1� near a focal point of the periodic orbit. Comparing with
PRMT�I�=e−I, we note that the tail of the intensity distribu-
tion remains exponential in the presence of scarring, but the
exponent now depends on the instability exponent �, leading
to a greatly enhanced probability of finding very high wave
function intensities on weakly unstable orbits. The exponen-
tially small probability of rare events in ballistic chaotic sys-
tems, as given by Eq. �24�, contrasts with the log-normal tail
predicted and observed for diffusive two-dimensional sys-
tems in the metallic regime �25�.

In the opposite limit I→0, Eq. �17� implies P�I�→S−1

�1/ S̄=1=PRMT�I�; this enhanced probability of very small
intensities is known as the antiscar effect.

IV. NUMERICAL MODEL AND RESULTS

For the purpose of testing the general results obtained in
Sec. II and III, we consider a specific family of discrete-time
kicked maps defined classically on a toroidal phase space
�q , p�� �0,1�� �0,1�. The time evolution for one step
�qn , pn�→ �qn+1 , pn+1� is given by

qn+1/2 = qn + T1��pn�mod 1,

pn+1 = pn − V��qn+1/2�mod 1,

qn+1 = qn+1/2 + T2��pn+1�mod 1 �25�

with

T1�p� =
1

2
�p − p0�2 + D1�2 sin 2��p − p0�

− sin 4��p − p0�� ,

V�q� = −
1

2
Kq�q − q0�2 + D2Kq�2 sin 2��q − q0�

− sin 4��q − q0�� ,

T2�p� =
1

2
Kp�p − p0�2 + D3Kp�2 sin 2��p − p0�

− sin 4��p − p0�� . �26�

Physically, such a map may be thought of arising from a
time-periodic Hamiltonian where a particle experiences free
evolution under the influence of kinetic term T1�p� for the
first half of a period, followed by a sudden kick of strength
V�q� and then by additional free evolution with kinetic term
T2�p� for the second half of the period. The corresponding
quantum evolution for one step is given by

Û = e−iT2�p̂�/�e−iV�q̂�/�e−iT1�p̂�/�, �27�

where �=1/2�N, and N is the dimension of the Hilbert
space. If we were interested in the spectral behavior only, we
could of course view the same dynamics stroboscopically
right before or right after each kick, effectively combining
the two free evolution substeps into one governed by kinetic
term T1+T2. In that case, choosing q0= p0=0 and integer
values for Kq and Kp �so that both V��q� and T2��p� are
continuous functions on the torus� would correspond to a
perturbed cat map, a system well studied in the literature
�26�.

In our case, we choose noninteger values of Kq and Kp, as
well as generic values for q0 and p0, resulting in diffraction
at q=0 and p=0. Nonzero q0 and p0 also cause a breaking of
time-reversal symmetry. By construction, the above map is
fully chaotic, for positive Kq and Kp+1, and has a periodic
orbit of period T=1 at �q , p�= �q0 , p0�. The instability expo-
nent � and unstable manifold orientation parameter �ab� of
this orbit are implicitly determined by the parameters Kq and
Kp via the relations

2 cosh � = 2 + Kq�1 + Kp� ,

2�ab�sinh � = 1 + Kp�1 + Kq� . �28�

Any desirable values of � and �ab� may be obtained by se-
lecting appropriate Kq and Kp in accordance with Eq. �28�.
The parameters D1 , D2, and D3 have no effect on the un-
stable orbit at �q0 , p0� or on its monodromy matrix �Eq. �3��,
and within certain bounds these additional parameters do not
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affect the fully chaotic nature of the dynamics �26�.
Such additional parameters may be used to construct a
large ensemble of distinct classical systems with identical
linearized behavior near the dominant periodic orbit. In
our numerical investigations, however, we did not see
significant effects in wave function statistics due to variation
of D1 , D2, and D3, and for simplicity the data shown
below was collected using D1=D2=D3=0. For a given pair
of parameters Kq , Kp �equivalently, � , �ab��, we do generate
an ensemble of similar systems by varying q0 and p0, as well
as varying boundary conditions in both the q and p direc-
tions. Specifically, the boundary condition variation is ac-
complished by taking parameters �1 and �2 uniformly distrib-
uted between 0 and 1, and requiring ��q+1�=��q�e−i2��1

and �̃�p+1�=�̃�p�ei2��2; this is equivalent to the choice
qj = �j+�2� /N, 0 jN−1 for the position-space basis and
p�= ��+�1� /N, 0�N−1 for the momentum-space basis.

In Fig. 1, we examine the IPR as a function of the insta-
bility exponent � of the periodic orbit, for two values of �ab�.
Good agreement is observed with the simple asymptotic
expression given by Eq. �9� for a wide range of parameters,
as the size of the observed and predicted fluctuations varies
by an order of magnitude. We recall that the validity of
Eq. �9� requires N−1
�
1, since the orbit period T=1
in the present case. Figure 2 shows what happens to the IPR
as we leave the semiclassical limit N−1
�. We observe
that to a very good approximation, deviations from the semi-
classical prediction are well described by a simple scaling
variable �N:

I�q0� = f��N�Ipred�q0� , �29�

where Ipred�q0� is the asymptotic prediction of Eq. �9�,
f�x�→1 for x	1, and f�x��x for x
1 �as indicated by the
dotted line in Fig. 2�. The dimensionless parameter �N may
equivalently be expressed as the ratio TH /T�, where TH is the
Heisenberg time at which individual eigenstates are resolved
and T�=1/� is a Lyapunov time associated with classical

decay away from the periodic orbit. It is noteworthy that the
crossover between the semiclassical behavior at large �N and
the saturated behavior at small �N occurs around �N�40 for
all parameter values considered. This implies, for example,
that in applications to quantum dots in the Coulomb block-
ade regime, where 30N70 in some typical experiments
�27�, asymptotic N→� expressions are inadequate for de-
scribing wave function intensity statistics in “generic” cha-
otic mean-field potentials ���1�, and finite-� expressions
must be used instead. Accurate modeling of wave function
statistical properties in such systems is necessary for proper
understanding and interpretation of conductance peak spac-
ing experiments �20�.

We now turn to the full distribution of wave function
intensities. A typical probability distribution is shown in Fig.
3, and the scar theory prediction of Eq. �17� clearly describes
the data much better than does the random matrix theory
result. We note that the distribution of rare high-intensity

FIG. 1. The average inverse participation ratio I�q0� on a peri-
odic orbit is shown as a function of instability exponent � of the
periodic orbit, for the system defined by Eqs. �25� and �26� with
system size N=1024. The upper and lower curves correspond to
�ab�=0.005, 0.025, respectively. The scar theory prediction of Eq.
�9� with F=2 is indicated by dashed lines. All quantities shown in
this and subsequent figures are dimensionless.

FIG. 2. f��N� �Eq. �29��, the ratio of the observed inverse par-
ticipation ratio to the asymptotic prediction of Eq. �9�, is shown as
a function of scaling parameter �N, for three different system sizes.
Open and filled symbols represent �ab�=0.025 and 0.05, respec-
tively. The dotted line indicates the asymptotic behavior f��N�
�0.035 �N, for �N
1.

FIG. 3. The wave function intensity distribution for N=512,
�=0.9, and �ab�=0.005 is compared with the scar theory prediction
of Eq. �17� �solid line� and with the simpler expression of Eq. �24�
�dashed line�, which is valid for large intensities. The random ma-
trix result PRMT�I�=e−I is shown by a dotted line for comparison.
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events is in adequate quantitative agreement with the simple
“tail” formula of Eq. �24�, although the latter result is strictly
valid only in the �→0 limit. In Fig. 4, we see that the scar
theory prediction also works well in the region of small to
moderate intensities; in particular it correctly predicts the
antiscar enhancement for I
1. The parameters used here are
evidently outside the range of validity of the perturbative
expression �Eq. �18��. For the values of N and �ab� consid-
ered in Fig. 4, the perturbative result becomes applicable in
the main body of the distribution for ��1.5 �not shown�,
where the system is sufficiently unstable that deviations from
RMT fall below the 20% level.

V. SUMMARY

We have studied the distribution of position-space wave
function intensities on an unstable periodic orbit in a ballistic
chaotic system. In the two-dimensional case �equivalently, in
a one-dimensional discrete-time map�, the full distribution of
intensities is given by three parameters: �i� the system size in
wavelength units, or alternatively the dimensionless conduc-
tance, inverse effective �, or Heisenberg time in units of a
one-bounce time; �ii� the instability exponent of the periodic
orbit; and �iii� orientation of the unstable manifold or alter-
natively the proximity to a focal point. Generalization to
higher dimensions is straightforward.

The tail of the probability distribution is exponential, with
exponent proportional to a simple function of the above three
parameters. This contrasts with the log-normal distribution of
rare events in disordered two-dimensional systems. When the
scar effect is weak, the behavior for moderate intensities is
given by a perturbative expression in complete analogy with
the disordered case.

Simple semiclassical expressions begin to break down
when the classical Lyapunov time associated with decay
away from the periodic orbit reaches 2.5–3 % of the Heisen-
berg time. A better quantitative understanding of these satu-
ration effects is needed for reliable predictions of wave func-
tion statistics in finite-size ballistic systems.
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